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Abstract 

An introduction is given to different thermodynamic models for representing mixing enthalpy 
measurements. The TAP series and the associate model are applied and compared on the basis of 
the concentration and temperature-dependent mixing enthalpy of the system Mg-Pb. A new 
appoximation method is introduced to calculate the parameters of the associate model. The 
number of available enthalpy values for the approximation process is systematically varied in 
order to simulate the flexibility of the models. From this point of view the associate model is 
a useful model for the representation of the mixing enthalpy and the prediction of the excess heat 
capacity. 

Keywords: Binary metallic melts; Excess heat capacity; Gibbs energy of mixing; Mixing 
enthalpy; Thermodynamic models 

1. Introduction 

High temperature measurements on liquid binary systems suffer from problems 
which restrict experimental concentration and temperature ranges, that applies es- 
pecially to the mixing enthalpy. Here thermodynamic models are of special interest for 
describing and analysing the experimental data. 

Symmetric enthalpy curves can be described by the regular [1] or subregular 
solution model [2]. The parameters of these models (functions, see Table 1) express the 
attractions between dissimilar atoms. Neither model is able to represent the tempera- 
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Table 1 
Polynomial representations of the mixing enthalpy 

Model Polynomoal representation of the mixing enthalpy 

Regular solution 

Subregular solution 

Quasi-chemical solution 

Modified quasi-chemical 
solution 

TAP series 

AH(M) = (XA XB) fl 

AH(M) = (XAXB) [fix A + f12 XB] = (XAXa) [fl* + fl*XA ] 
where fl* = #1 and fl* = fll - f12 

AH(M)=(XAXlI)[fll--~XAXlI]=(XAXa)[fl* + fl~XAXB] 

wherefl* = i l l ,  f l ~ -  f12 
T 

n * 1 - e  AH(M) = x a  xA Ln.I-~T 
/ i = I  e 

ture-dependence. The quasichemical solution model [3] and the modified quasichemi- 
cal model I-4] enables the description of asymmetric enthalpy curves by the ~ function 
with three parameters, wherein the temperature-dependence is represented by the 
parameters f12 and f13, respectively (see Table 1). A posteriori only slight temperature 
dependences can be taken into consideration. 

All these solution models are able to represent smooth enthalpy curves. If a sharp 
minimum occurs, power series with more than three parameters are necessary. On the 
basis of polynomial functions, Tomiska developed the thermodynamic adopted power 
series (TAP series) [5]. He showed in comparison with six polynomial representations 
for excess functions that the TAP series (presented in Table 1) was, in his opinion, the 
most applicable I-6]. The TAP series is able to describe the temperature-dependence. 
Then the parameters are polynomials. E gives the number of terms used for the 
temperature description, where N gives the degree of the TAP series. 

A physical meaning can be found 1-7] for most parameters in Table 1. Putting E = 1 
in the TAP series, these will simplify to the regular solution model if N = 1, to the 
subregular solution model if N = 2 and to the modified quasichemical model if N = 3. 

The associate model is another way of describing mixing enthalpies. Together with a 
new approximation technique it is presented in the following section. In the third section 
this model is compared with the polynomial representations of the mixing enthalpy. 

2. Associate model for binary alloys 

Gerling et al. [8] give a brief survey of the development of the model of associates. 
They show the variety of associate models including different assumptions. In this 
connection association models have two basic assumptions in common: 
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1. In the AB binary metallic melt regions of chemical short range order (CSRO) exist, 
which will be called associates (AiBj). 

2. The associates are in a dynamic equilibrium with the non-associated (free) atoms 
(A:,B:). 

With these conditions the binary metallic melt is interpreted as a solution of three 
components. Therefore the mass action law is: 

iAf + jBf  = AiB j 

with the equilibrium constant: 

(1) 

A HAiBj --  T A SA~n~'~ XAiB i ~AiB i 
K = exp  R T- / = (XAf)i'(XB,) j (~Af)i'(~Bf) j 

YAiB. lnK--On  , -iln  f-jlnx ,l+ln( , '  \(yA) (~.~) / 

(2) 

(3) 

where x A ~ = n A B//1 is the mole fraction of the associate and x A = /1A/n and x B = n B / n  
i j i j f f f f 

refer to the reactants. The numbers of moles of the reactants are hA, = n A --inA, Bj and 
ha, = n B - j nAiBj wherein n A and n B are the initial numbers of moles of the components 
A and B, respectively. ~ABj, YAr and Ys, are the activity coefficients and A H A a  ' and AS A B, 
are the formation enthaipy and formation entropy of the associate. ' ' 

The mixing enthalpy and mixing entropy are defined as: 

AH(M) = na~nBfC1 +/1ArnAiBi C2 + nBrn&Bj C3 + nA,BjC4 
/1 /l /1 

(4) 

AS(M) = - R(nAfln Xar + nBfln xBf +/1aiBj In XA,B, ) +/1AiBjA SAiBj (5) 

wherein C 1-C 3 are the parameters of the associate model and describe the interactions 
between 

- -  The pure components, i.e. the free atoms (Af-Bf), 
- -  The reactant A, and the associate and 
- -  The reactant B, and the associate. 

C4 is the formation enthalpy of the associate. Knowing the mixing enthalpy and mixing 
entropy, the Gibbs-Helmholtz function, Eq. (6), yields the Gibbs energy of mixing 
AG(M): 

AG(M) = AH(M) - TAS(M) (6) 

To calculate the parameters it is necessary to know the different numbers of 
moles (see Eq. (4)). Therefore Eqs. (3) and (4) are the basic equations for an iterative 
approximation treatment. Defining C 5 --- In K, the perfect differential of the mixing 
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enthalpy is: 

O(AHIM))=[aAmM!I dcI+F.aA-H(M)I dC2 
L acl  JCv[~:25 L ac2 Jc~=1,35 

aAH(M) 
FOAH(M'1 dS32,~5 [ ~ ]c~ dC4 

+L a ~  J .  ,:, ~,~ 

+ [~AH(M)]cv dC5 * (7, 

or, by substituting the partial derivatives: 

d(AH(M)) = EldC1 + E2dC2 + E3dC3 + E4dC4 + E5dC5 (8) 

wherein the parameters are given as C v with v -- 1-5. 
Different approaches deal with the quotient of the activity coefficients in Eq. (2). We 

use the commonly accepted quasiideal statement [9-11] simplifying the quotient as 
unity. From this it can be seen that the fifth parameter and the mixing enthalpy itself are 
still functions of the number of moles of the associate. Therefore one obtains the 
following partial derivatives of the mixing enthalpy: 

: L  ~ l~,k=~-,-L- ~ Jc, ~=, 4moc IP-~lj~, v=2,3,5 

+ L- ~-C 7 j~ ...... , v = 2  • = v =  2 - 4  (9) I_ T~ - i  Ac,,,~,~ 

=L ac2 icily:,,3-, L ~'mi~j Jcvv=l~[~C2]c . . . .  1,3)' 

P "I )l P "(M)I v: (1o) 
+ L ~ Jc.,..,., Iv:,,,,. = L 7-~ Jc.,..,., ,,~.. 

E 3 F.aaH(M)l FOAH(M) 1 
=L ac3 Joy v= 1,2,4,5 v=l-4.[~C3]cvv= = / ~  ic, ,.2.5 

p -iMq P HIM)I v =  (11) 
+ L ~ /~ ..... .j Iv=,.2,4 = L 7-#-7 A~....,., ,.2,,, 

l [aAH(M)I , : ,  3,, 
E4=, aC4 dc~ (12) 

and 

L ac5  _1c~,=,4 = ,=,4-~-~- 
F ] I l ~  jc~ I~=,~ L ac5 Jc~ (13) 
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wherein 

OAH(M)I n ( - j  nA,-- inB,) -- nArnBf(1 -- i --j ) 
- ~  j = C 1  n2 

+ C2 n(nA,- i nA,Bi) -- nanA~Bi(1 -- i - - j  ) 
n 2 

+ C3 n ( n s f -  j nAia i) -- ns, nA,a~(1 -- i --j_! 
n 2 

with 

+ C 4  

I~ AH(__M) 1 = nA, nBr 

ac1 Jc~,.A,.~[,,=2 4 n 

,,= - " " ' " '  
L - U C 5  Jc  ...... , , ,3,, , 

AH(M)I ,= 1,2,4 
nBrnAflB j 

" ~ ' ~  JC . . . .  ia) n 

~nk,& = 1 

LanAiB,3C, Iv= I 3,5 

[ -~C51 1 i 2 j2 ( 1 - i - j )  2 
/ [ = + - - - 1  
L 6~nA~ajjcv v=l 3,5 r/a~a~ nat nBf n 

Replacing the differentials in Eq. (8) by finite differences one obtains: 

A ( A H ( M ) ) =  E 1 A C 1  + E 2 A C 2  + E 3 A C 3  + E 4 A C 4  + E 5 A C 5  

with 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

A C v  = Cv(s + 1) - Cv(s) (23) 

wherein AH(M)exp and AH(M)c, ~ are the measured and the calculated mixing enthal- 
pies. The number of steps (loops) of the iteration are given by the index s. 

A stoichiometry of the associate must be assumed to start the iteration, mostly the 
stoichiometry of an intermetallic compound. Whenever the system has more than one 
or no intermetallic compounds, the obvious choice for the composition to use is the 
value where the curve of the mixing enthalpy exhibits a minimum. Furthermore the 

A(AH(M)) = AH(M)ex p - ~U(M)cal (22) 

and 
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number of moles of the associate must be assumed in order to calculate the equilibrium 
constant for the first step of the iteration. With the measured values of the mixing 
enthalpy, the mole fractions of the product and the reactants are available. A first fit 
with Eq. (4) produces a first set of parameters C 1-C4. This enables the calculation of 
the partial derivatives (El-E5) and a further fit with Eq. (21) yields the differences 
(AC 1-AC5). The parameters are corrected with use of Eq. (23) and the loop starts 
again. This procedure is continued until the differences become zero or the least squares 
values of A(AH(M)) are minimal. 

Qin et al. [12] compared associate models with different numbers of parameters and 
showed that each model is able to describe the measured mixing enthalpies with its 
specific values of parameters, e.g. only small standard deviations occur. Applying the 
associate model to different measurements of the same system indicates that if the 
measured mixing enthalpy values differ slightly the parameters change significantly 
[12]. Therefore the physical meaning of the parameters should not be overinterpreted 
because the approximation process is always a pure mathematical treatment. 

Nevertheless, the associate model including the presented approximation technique 
is a good tool for describing the concentration- and temperature-dependent measure- 
ments of the mixing enthalpy. Furthermore, the model enables the prediction of 
enthalpy data for concentration and temperature ranges which cannot be obtained by 
measurement. This will be shown in the following comparison of the described models. 

3. Discussion 

Choosing the system Mg-Pb as an example we compared the polynomial represen- 
tation and the associate model. The mixing enthalpy of this system was measured by 
Sommer et al. [13] at T=  943 K and T= 1033 K over the entire concentration range 
and at T= 1233 K in the lead-rich range up to 63 at.% magnesium. The enthalpy values 
(see Fig. 1) exhibit a sharp minimum at the composition of the congruent melting 
intermetallic compound Mg 2 Pb. Furthermore, Sommer et al. measured the excess heat 
capacity at T= 1100 K which deviates positively from the Neumann-Kopp rule (see 
Fig. 2). 

Due to the sharp mixing enthalpy minimum the TAP and associate models are the 
favourite two for the description. To test the capabilities of the models we compared the 
representations of the measurements by simulating the situation that only measure- 
ments near the pure components at different temperatures are possible. The accuracy of 
the descriptions was tested by comparison of the predictions for the excess heat 
capacity. Both models enabled the calculation of the excess heat capacity, Cp(xs): 

t3AH(M) (24) 
Cp(xs) - t~ T 

Differentiation of the polynomial description of the TAP series (see Table 1) leads to: 

n=N [-e=E 1 
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Fig. 1. Mixing enthalpies of the system Mg-Pb [13], described with the associate model, all values 
considered. 
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Fig. 2. Excess heat capacity of the system M g-Pb at T=  1100 K [13], curves calculated using Eq. [24] and 
different applications of the associate model. 
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Using the definition Cp(XS) = (0AH(M)/t3 T) = (OAH(M)/OnA,B~) (OnA,BJO T) the ex- 
cess heat capacity can be expressed by the associate model as the product of Eq. (14) 
and 

t~nA~Bj nC5 { 1 i2 :2 }2 
- -  + - -  + J- (1  - -  i - -  j )2  ( 2 6 )  

t~ T R T 2 XAiBj XAf XBf 

Fig. 1 shows the mixing enthalpy of the system M g - P b  described by the associate 
model. All values are used to calculate the model parameters. The parameters together 
with the standard deviation are given in Table 2. The resulting prediction of the 
concentration-dependence of the excess heat capacity at T = 1100 K is drawn in Fig. 2 
(continuous line). 

To obtain the best representation with the TAP series the degree (N) and the number 
of temperature terms (E) were varied. We used the degrees N -- 3... 6; one temperature 
term was considered, i.e. E = 2. The polynomial functions and the standard deviation 
for these conditions are given in Table 3. The curves presented in Figs. 3 and 4 and their 
standard deviations indicate that the representations of the measurements with the 
TAP series are not as good as the representation given by the associate model (see Fig. 1 
and Table 2). The predictions of the excess heat capacity by the different TAP series (see 
Fig. 5) are completely unsatisfactorly. Some segments of the curves lay below the zero 
line. This is an atypical behaviour for systems with an exothermic mixing enthalpy. 

Mixing enthalpy measurements are frequently available only at the edge of systems. 
To simulate this situation we reduced the number of enthalpy values for the calculation 
of the parameters. The result of this comparison between the TAP series (N = 3; E = 2) 
and the associate model is shown in Fig. 6 where the fitted values are marked as full 
black symbols. 

The TAP series is a pure mathematical treatment of the data. The approximation 
process does not take into consideration the correct temperature trend of the mixing 
enthalpy curves. Fig. 6 shows that further measurements at different temperatures do 
not increase the prospect of success. Therefore, the polynomial representations should 
be used only for measured concentrations. TAP predictions of concentration- and 
temperature-dependencies are unreliable. 

Table 2 
Parameter and standard deviation for the different applications of the associate model 

Considered Parameters 
values 

ClinkJmol t C2inkJmol-1 C3inkJmol 1 AHA,a, ASA, B in(Jmo1K)-~ 

All - 13.454 0.106 5.253 - 39.1 - 15.364 
Standard deviation: a = 0.116 

All temp., - 10.05 -3.56 3.74 -37.15 - 10.835 
Standard deviation: tr = 0.135 

- 14.455 1.336 6.259 -39.06 - 14.2705 
T= 943 K Standard deviation: ~r = 0.123 
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Table 3 
Polynomial functions and standard deviation of the different TAP series (N = 3... 6), x = xpb 
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Part I: All mixing enthalpy values were considered 

AH(M) 0.46x I03 ( 89.84x103) ( 
N=3:x(1--x) =5553 T 4- - 1 4 0 + - - T  x+ 118.29 

Standard deviation: a = 0.5 

AH(M) 26.82x103 ( 285x103) 
N = 4: x(l - x) 57.21 + T + 179.62 + T x 

( 4 9 8 " 2 7 x 1 0 3 ~ /  238.17x103) 
+ -213.62+ T- ")x2+~ 67"31 T x3 

Standard deviation: cr = 0.198 

AH(M)_x) 30"55x103 ( 342"64x103) 
N=5:x( 1 6 0 . 3 2 + - - T  + 226.96 T x 

( 739"22 x 103) ( 610"43 x 103) 
+ -411.03+ x2+ 371 x 3 7: 

( 189'25×103) 
+ - 153.78 + x 4 

T 

Standard deviation: a = 0.192 
4 3 . 9 9 x 1 0 3 (  950.92x103) 

AH(M) 2 0 . 0 3 + - -  + 1123.94 x 
N = 6:x(1 - x) T T 

+(_676266+6 0  4   
( 16887"77 x 103) ( 

+ - 16526.56+ - x 4+ 6243.6 
T 

Standard deviation: a = 0.13 
Part II: Values at all temperatures but on the edge were considered 

245'74x103(__ 887"23x103) 
AH(M) 296.77 + + 913.36- x N 3: 
x(1 - x) T T 

( 708"87×103) 
+ - 694.85 T- x2 

Standard deviation: a = 0.307 (in respect of the considered values) 

107.45 × 103) 
T x2 

15841 × 103) i , X 3 

6481.79 T × 103) x5 

The description of measurements  with the associate model  is reliable even when 
input data  are limited in range. This reliability is confirmed by small s tandard 
deviations (see Table 2) of the fitted values to the experimental  values with use of all 
enthalpy values. Here the prediction of the excess heat capacity is quite good. To  
further prove the flexibility of this model  we varied the number  of given values in such 
a way that only experimental  data  at one temperature  ( T =  943 K) were taken into 
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Fig. 3. Mixing enthalpies of the system Mg-Pb  [13], described with different TAP series (N = 3 and N = 4). 
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account. The parameters are given in Table 2. At this temperature enthalpies are 
known over the entire concentration range and the position of the minimum is clear. 
The result is a small standard deviation (see Table 2) referring to all values and a correct 
description of the temperature dependence (see Fig. 7). Furthermore the prediction of 
the excess heat capacity is good (see Fig. 2). 

The prediction of the Gibbs energy of mixing of the system is the final application of 
the model. Measurements of the enthalpy and the Gibbs energy of mixing (A G(M)) of 
the system Mg-Pb are given by Eldridge et al. 1-14] and Hultgren et al. [15]. Using the 
mixing enthalpy measurements we obtained the parameters in Table 4 and calculated 

Table 4 
Calculated parameters of the associate model for the system Mg-Pb, using the measurements of Eldridge 
et al. [14] and of Hultgren et al. [15] 

Measurement Parameters 

C l i n k J m o l - l C 2 i n k J m o l  I C 3 i n k J m o l - l A H A ~ B i n k J m o l - I  ASA,ujinJ(molK) -1 

[14] -24 .41 -30 .92  - 2 7 . 4  -18 .67  -5 .014  
T =  822K Standard deviation: a = 0.294 

[15] -24.41 -40 .90  - 2 7 . 4  -18 .67  - 5  
T =  973K Standard deviation: a = 0.51 
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Fig. 8. Mixing enthalpies and free enthalpies of mixing (full black symbols) of the system Mg-Pb.  
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the Gibbs energy of mixing (see Fig. 8). The prediction of the Gibbs energy is also 
satisfactory. 

4. Conclusions 

The TAP series and the associate model have been applied to mixing enthalpy 
measurements for the system Mg-Pb [ 13]. Three different situations are presented to 
simulate typical problems of mixing enthalpy measurements and to show how the 
models behave. Measurements are available (a) over the entire concentration range at 
different temperatures, (b) at the edges of a system at different temperatures and (c) over 
the entire concentration range at one temperature. 

In view of the fact that the TAP series does not consider thermodynamic arrange- 
ments of a system, the series fit gives a satisfactory representation for the mixing when 
input data cover the entire concentration range. However prediction of the excess heat 
capacity is erroneous. 

Excellent results are obtained with the associate model for all three simulated 
situations. With the parameters calculated the representation of the mixing enthalpy 
measurements, predictions of the excess heat capacity and of the Gibbs energy of 
mixing are possible and agree with the measured values. Therefore the associate model 
is predestined to represent mixing enthalpy measurements of liquid binary metallic 
systems. 
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